Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Atmospheric Environment ; 293, 2023.
Article in English | Scopus | ID: covidwho-2241340

ABSTRACT

Particle size distribution is a major factor in the health and climate effects of ambient aerosols, and it shows a large variation depending on the prevailing atmospheric emission sources. In this work, the particle number size distributions of ambient air were investigated at a suburban detached housing area in northern Helsinki, Finland, during a half-year period from winter to summer of 2020. The measurements were conducted with a scanning mobility particle sizer (SMPS) with a particle size range of 16–698 nm (mobility diameter), and the events with a dominant particle source were identified systematically from the data based on the time of the day and different particle physical and chemical properties. During the measurement period, four different types of events with a dominant contribution from either wood-burning (WB), traffic (TRA), secondary biogenic (BIO), or long-range transported (LRT) aerosol were observed. The particle size was the largest for the LRT events followed by BIO, WB, and TRA events with the geometric mean diameters of 72, 62, 57, and 41 nm, respectively. BIO and LRT produced the largest particle mode sizes followed by WB, and TRA with the modes of 69, 69, 46, and 25 nm, respectively. Each event type had also a noticeably different shape of the average number size distribution (NSD). In addition to the evaluation of NSDs representing different particle sources, also the effects of COVID-19 lockdown on specific aerosol properties were studied as during the measurement period the COVID-19 restrictions took place greatly reducing the traffic volumes in the Helsinki area in the spring of 2020. These restrictions had a significant contribution to reducing the concentrations of NOx and black carbon originating from fossil fuel combustion concentration, but insignificant effects on other studied variables such as number concentration and size distribution or particle mass concentrations (PM1, PM2.5, or PM10). © 2022 The Authors

2.
Sci Total Environ ; 858(Pt 2): 159904, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2096017

ABSTRACT

Despite the curtailment of atmospheric condensing precursor gases during the Coronavirus disease 2019 (COVID-19) lockdown (LD) period, unexpected haze events via the formation of new particles and their subsequent growth have been identified. This study investigated the impact of emission reduction during the Chinese LD period on the new particle formation (NPF) frequency and corresponding particle number size distribution (PNSD) at three regional background atmospheric monitoring sites in the western coastal areas of the Korean Peninsula. During this duration, the number concentrations of the nucleation- (<25 nm) and accumulation-mode (>90 nm) particles significantly decreased in Baengryeong (BRY), showing decreases of 34% and 29%, respectively. Unlike BRY, the PNSD in Anmyeon (AMY), which is influenced by nearby industrial emissions, remained nearly unchanged during the LD period, possibly because the reduction in industrial emissions was not significant during the social distancing period enforced by Korea. Bongseong (BOS) showed a similar variation to that of BRY; however, the magnitude of the reduction was weaker because of its higher altitude compared to other sites. The cyclostationary empirical orthogonal function technique was applied to the measured PNSDs at the three sites to objectively classify NPF events. Because mode 1 of cyclostationary loading vectors commonly represented the typical diurnal variation of PNSD during regional NPF events at three sites, mode 1 of the corresponding principal component time series was used for NPF classification. The NPF frequency decreased by 7%, 1%, and 7% in BRY, AMY, and BOS, respectively, despite favorable meteorological conditions, such as increased temperature and insolation during the LD period. The diurnal variation in the sulfuric acid (H2SO4) proxy implied that the H2SO4 proxy acted as a determining factor for NPF events during the NPF occurrence time (8-12 local hours) in AMY and BOS; however, NPF occurrence in BRY was not connected to the H2SO4 proxy level. This suggests that BRY was more likely to be influenced by the reduction in organic species in the continental upwind regions, while the occurrence of NPF events in AMY and BOS can be suppressed in association with the distinct reduction in inorganic compounds represented by the H2SO4 proxy during the LD period.


Subject(s)
Air Pollutants , COVID-19 , Humans , Particulate Matter/analysis , Air Pollutants/analysis , COVID-19/epidemiology , Particle Size , Environmental Monitoring/methods , Communicable Disease Control , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL